

PASS LAS

Chimie en QCM

2e édition

- Tout le programme en QCM
- Corrigés commentés
- Pour s'entraîner et réviser tout au long de l'année

Claude **Gros** Nicolas **Desbois**

Configurations électroniques / effets électroniques

A	-		,
Lugetion		Hno	nco
Ouestion		LITTO	1100

Parmi	les affirm	ations suiv	vantes, coc	her la ou	les pro	positions 6	exactes.

- A) Deux isotopes diffèrent par leurs nombres de neutrons
- B) La configuration électronique de l'anion ¹⁹₉F⁻ est 1s²2s²2p⁵
- C) La configuration électronique du cation $^{59}_{27}\text{Co}^{2+}$ est $1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^63\text{d}^7(4\text{s}^0)$
- D) Selon la théorie VSEPR, le cation NO_2^+ est de géométrie triangulaire plane, en AX_2E_1
- E) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie triangulaire plane, en AX₃E₀

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 2. Enoncé

Parmi les affirmations suivantes, cocher la ou les propositions exactes. Données : ¹²₆C (Carbone), ²³₁₁Na (Sodium), ⁵⁹₂₇Co (Cobalt)

- A) La configuration électronique de l'ion sodium ²³₁₁Na⁺ est 1s²2s²2p⁶3s¹
- B) La configuration électronique du cation $^{59}_{27}\text{Co}^{3+}$ est $1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^63\text{d}^7(4\text{s}^0)$
- C) Selon la théorie VSEPR, le cyanure d'hydrogène (HCN) est linéaire
- D) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie tétraédrique
- E) Selon la théorie VSEPR, le dioxyde de carbone (CO₂) est une molécule coudée

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 3. Enoncé

On s'intéresse au chlorure de magnésium, de formule MgCl₂, parfois prescrit en cas de fatigue.

Données: ²⁴₁₂Mg (Magnésium), ³⁵₁₇Cl (Chlore)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'atome de magnésium possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique du chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁵
- C) Selon la théorie VSEPR, le chlorure de magnésium est de géométrie triangulaire plan
- D) Le magnésium appartient à la famille des alcalino-terreux
- E) MgCl₂ présente la même géométrie que le dioxyde de carbone (CO₂)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 4. Enoncé

On s'intéresse au trichlorure de bore de formule BCl₃.

Données: ¹⁰₅B (Bore), ³⁵₁₇Cl (Chlore)

- A) L'atome de bore possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique de l'atome de chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁴
- C) Selon la théorie VSEPR, le trichlorure de bore est triangulaire plan
- D) Le trichlorure de bore est un acide de Lewis
- E) Dans BCl₃, l'atome de bore (atome central) est hybridé sp²

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 5. Enoncé

Configurations électroniques (e-). La cytochrome c oxydase, enzyme terminale de la chaîne respiratoire, contient en son cœur un atome de fer(II). La cobalamine (vitamine B_{12}) contient, quant à elle, un atome de cobalt(III).

Données : 56₂₆Fe, 59₂₇Co

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La configuration e- du $^{59}_{27}$ Co⁽⁰⁾ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
- B) La configuration e- du $^{59}_{27}$ Co³⁺ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷ (4s⁰)
- C) La configuration e- du $^{56}{}_{26}$ Fe $^{(0)}$ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁶)
- D) La configuration e- du ${}^{56}_{26}$ Fe²⁺ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ (4s⁰)
- E) Pour n = 3 (nombre quantique principal), la couche M peut comporter au maximum 16 électrons

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 6. Enoncé

Théorie VSEPR.

Données: ¹₁H, ¹⁰₅B, ¹²₆C, ¹⁴₇N, ¹⁶₈O, ³⁵₁₇Cl

- A) CO₂ et HCN sont en AX₂E₀ (géométrie linéaire)
- B) CO₂ et H₂O sont en AX₂E₂ (géométrie tétraédrique)
- C) COCl₂ et NH₄⁺ sont en AX₄E₀ (géométrie tétraédrique)
- D) COCl₂ et BCl₃ sont en AX₃E₀ (géométrie triangulaire plane)
- E) NH₃ et H₃O⁺ sont en AX₃E₁ (géométrie tétraédrique)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 7. Enoncé

Le métabolisme des protéines conduit à la formation de guanidine qui peut se retrouver dans les urines sous forme protonée (sous forme d'ion guanidinium). On s'intéresse à la représentation de Lewis de l'ion guanidinium (représentations 1 à 4 ci-dessous):

$$\begin{array}{ccc} & & & & & & \\ & \stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}} & & & & \\ & \stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}} & & & \\ & H_2 \stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}} & & & \\ & NH_2 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

- A) La représentation 1 est exacte selon Lewis
- B) Les représentations 2 et 3 sont exactes selon Lewis
- C) La représentation 4 est exacte selon Lewis
- D) L'atome de carbone central de la guanidine est hybridé sp²
- E) La guanidine est une base de Lewis

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 8. Enoncé

On s'intéresse à la représentation de Lewis de l'anion carbonate CO_3^{2-} (représentations 1 à 4 ci-dessous).

$$0 = 0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

Représentation 3

Représentation 4

Représentation **1** Représentation **2** Données : ${}^{12}_{6}$ C (Carbone), ${}^{16}_{8}$ O (Oxygène)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Selon la théorie VSEPR, l'anion carbonate CO₃²⁻ est de géométrie triangulaire plan
- B) La représentation 1 de l'anion carbonate CO₃²⁻ est exacte selon Lewis
- C) Les représentations 2 et 3 de l'anion carbonate CO₃²⁻ sont exactes selon Lewis
- D) La représentation 4 de l'anion carbonate CO₃²⁻ est fausse selon Lewis
- E) Dans CO₃²⁻, l'atome de carbone est hybridé sp

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 9. Enoncé

L'ion hypobromite BrO est utilisé pour ses propriétés antiseptiques et parasiticides. On s'intéresse à la représentation de Lewis de l'anion BrO (représentations 1 à 3 ci-dessous) :

$$|\overline{Br} - \overline{O}|^{\Theta}$$

$$|\overline{Br} = \overline{O}|^{\Theta}$$

$$^{\odot}$$
IBr $-\overline{O}$ I

Représentation 1 Représentation 2 Représentation 3

Données: 1680 (Oxygène), 7935Br (Brome)

- A) L'atome de Br est de valence 1
- B) La représentation 1 de l'anion BrO est exacte selon Lewis
- C) La représentation 2 de l'anion BrO est fausse selon Lewis
- D) La représentation 3 de l'anion BrO est exacte selon Lewis
- E) Le brome possède 7 e- sur sa couche externe

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 10. Enoncé

On s'intéresse ci-après aux représentations de Lewis du protoxyde d'azote $(N_2O, un gaz utilisé en anesthésie)$:

$$\oplus \overline{N} = \stackrel{\bigcirc}{N} = 0$$

$$(N=N=0)$$

$$\underline{\underline{\mathsf{N}}} = \underline{\underline{\mathsf{N}}} - \underline{\underline{\mathsf{O}}}^{\ominus}$$

Représentation 1

Représentation 2

Représentation 3

Représentation 4

Données : 147N, 168O

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La représentation 1 est exacte selon Lewis
- B) La représentation 2 est exacte selon Lewis
- C) La représentation 3 est exacte selon Lewis
- D) La représentation 4 est exacte selon Lewis
- E) La représentation 4 respecte la règle de l'Octet

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 11. Enoncé

L'halauxifen-méthyl est un herbicide avec des propriétés d'hormone de croissance. Le formotérol est utilisé en tant que bronchodilatateur. Leurs structures sont représentées ci-dessous :

- A) L'halauxifen-méthyl possède une fonction ester méthylique
- B) Le groupement -OCH3 (étheroxyde) présente un effet mésomère électrodonneur (+M)
- C) Dans le formotérol représenté ci-dessus, tous les atomes de carbone asymétriques sont de configuration absolue *Rectus* (*R*)
- D) Le formotérol possède une fonction amide primaire qui présente un effet mésomère électroattracteur (-M)
- E) Dans l'halauxifen-méthyl, les atomes de fluor (-F) et de chlore (-Cl) présentent un effet mésomère électrodonneur (+M) faible

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 12. Enoncé

Les structures de l'ibuprofène (un anti-inflammatoire non stéroïdien), du paracétamol (utilisé comme antalgique et antipyrétique) et de l'aspirine (un anti-inflammatoire non stéroïdien) sont représentées ci-dessous :

Aspirine

- A) L'ibuprofène représenté ci-dessus est de configuration absolue *Rectus (R)*
- B) Dans le paracétamol, le groupement hydroxyle et la fonction amide présentent tous deux un effet mésomère électroattracteur (-M)
- C) Le paracétamol possède une fonction amine secondaire
- D) Le groupement -COOH de l'aspirine présente un effet mésomère électroattracteur (-M)
- E) L'aspirine possède une fonction ester méthylique

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 13. Enoncé

Les structures du flurbiprofène, un anti-inflammatoire non-stéroïdien, et du flutamide, utilisé dans le traitement du cancer de la prostate, sont représentées ci-dessous :

Flurbiprofène

$$O_2N$$
 CF_3

Flutamide

- A) Le flurbiprofène représenté ci-dessus est de configuration absolue *Rectus* (R)
- B) Dans le flurbiprofène, l'atome de fluor présente un effet mésomère donneur (+M) faible et un effet inductif électroattracteur (-I) fort
- C) Le flutamide est achiral
- D) Dans le flutamide, le groupement -NO₂ présente un effet mésomère électroattracteur (-M) fort
- E) Le flutamide possède un radical iso-butyle

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 14. Enoncé

On s'intéresse ci-dessous à la structure de la midodrine, une pro-drogue de la desglimidodrine :

- A) La midodrine possède une fonction amide secondaire
- B) Les deux groupements méthoxy (-OCH₃) sont en position *méta* l'un par rapport à l'autre
- C) Le radical méthoxy (-OCH₃) exerce un effet mésomère électrodonneur (+M)
- D) La desglimidodrine représentée ci-dessus est de configuration absolue *Rectus (R)*
- E) La desglimidodrine possède une fonction amine primaire

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 15. Enoncé

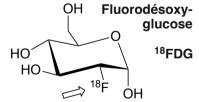
Les structures de la benzbromarone (utilisée dans le traitement de l'hyperuricémie) et l'acide mycophénolique (un agent immunosuppresseur) sont représentées ci-dessous :

- A) Les deux atomes de brome de la benzbromarone sont en position *méta* l'un par rapport à l'autre
- B) Le groupement -OH de la benzbromarone est en position *ortho* des deux atomes de brome
- C) Les deux atomes de brome exercent un effet mésomère électrodonneur (+M) faible
- D) L'acide mycophénolique possède une double liaison C=C de configuration *Zusammen* (*Z*)
- E) L'acide mycophénolique possède une fonction lactone (ester cyclique)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 16. Enoncé

La disparition actuelle de nombreux essaims d'abeilles est potentiellement liée à une utilisation excessive d'insecticides. Les structures de l'acétamipride et du nitenpyrame, deux insecticides de la famille des néonicotinoïdes, sont représentées ci-dessous :


Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'acétamipride possède une fonction nitrile
- B) Les deux groupements -CH₃ de l'acétamipride exercent un effet inductif électrodonneur (+I)
- C) L'atome de chlore exerce un effet mésomère électrodonneur (+M) faible
- D) L'acétamipride et le nitenpyrame possèdent tous deux un cycle aromatique
- E) Le groupement -NO₂ présente un effet mésomère électroattracteur (-M)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 17. Enoncé

On s'intéresse ci-après à la structure chimique du fluorodésoxyglucose, un dérivé marqué au fluor 18 radioactif qui est utilisé en imagerie par Tomographie d'Emission de Positrons (imagerie TEP). Donnée: 199F (Fluor)

- A) Il manque 13 doublets non-liants pour représenter correctement, selon Lewis, la molécule de fluorodésoxyglucose (¹⁸FDG)
- B) Le fluorodésoxyglucose (18FDG) possède une fonction étheroxyde
- C) Le fluor ¹⁸₉F radioactif est un isotope du fluor ¹⁹₉F, élément naturel
- D) La configuration électronique du fluor ¹⁸ ₉F est 1s² 2s² 2p⁶
- E) L'atome de fluor est plus électronégatif que l'atome d'oxygène

Proposition	A)	B)	C)	D)	E)
Réponse					

Réponses

Configurations électroniques / effets électroniques

Question 1. Réponses

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Deux isotopes diffèrent par leurs nombres de neutrons
- B) La configuration électronique de l'anion ¹⁹₉F⁻ est 1s²2s²2p⁵
- C) La configuration électronique du cation $^{^{59}27}$ Co²⁺ est $1s^22s^22p^63s^23p^63d^7(4s^0)$
- D) Selon la théorie VSEPR, le cation NO₂⁺ est de géométrie triangulaire plane, en AX₂E₁
- E) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie triangulaire plane, en AX₃E₀

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

B) La configuration électronique de l'anion ¹⁹₉F⁻ est 1s²2s²2p⁶ (10 e- au total)

D) et E) Le cation NO₂⁺ est de géométrie linéaire et le carbanion C(CH₃)₃⁻ est de géométrie tétraédrique

Question 2. Réponses

Parmi les affirmations suivantes, cocher la ou les propositions exactes. Données : ¹²₆C (Carbone), ²³₁₁Na (Sodium), ⁵⁹₂₇Co (Cobalt)

- A) La configuration électronique de l'ion sodium ²³₁₁Na⁺ est 1s²2s²2p⁶3s¹
- B) La configuration électronique du cation ⁵⁹₂₇Co³⁺ est 1s²2s²2p⁶3s²3p⁶3d⁷(4s⁰)
- C) Selon la théorie VSEPR, le cyanure d'hydrogène (HCN) est linéaire
- D) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie tétraédrique
- E) Selon la théorie VSEPR, le dioxyde de carbone (CO₂) est une molécule coudée

Proposition	A)	B)	C)	D)	E)
Réponse					

- A) La configuration électronique de l'ion sodium Na⁺ est 1s²2s²2p⁶
- B) La configuration électronique du cation ⁵⁹₂₇Co³⁺ est 1s²2s²2p⁶3s²3p⁶3d⁶ (24 e- au total)
- E) Le dioxyde de carbone est de géométrie linéaire

Question 3. Réponses

On s'intéresse au chlorure de magnésium, de formule MgCl₂, parfois prescrit en cas de fatigue.

Données: ²⁴₁₂Mg (Magnésium), ³⁵₁₇Cl (Chlore)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'atome de magnésium possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique du chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁵
- C) Selon la théorie VSEPR, le chlorure de magnésium est de géométrie triangulaire plan
- D) Le magnésium appartient à la famille des alcalino-terreux
- E) MgCl₂ présente la même géométrie que le dioxyde de carbone (CO₂)

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

- A) L'atome de magnésium possède 2 électrons célibataires sur sa couche M
- C) MgCl₂ est de géométrie linéaire

Question 4. Réponses

On s'intéresse au trichlorure de bore de formule BCl₃.

Données: ¹⁰₅B (Bore), ³⁵₁₇Cl (Chlore)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'atome de bore possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique de l'atome de chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁴
- C) Selon la théorie VSEPR, le trichlorure de bore est triangulaire plan
- D) Le trichlorure de bore est un acide de Lewis
- E) Dans BCl₃, l'atome de bore (atome central) est hybridé sp²

Proposition	A)	B)	C)	D)	E)
Réponse					

- A) L'atome de bore possède 3 e- célibataires sur sa couche L (en 1s² 2s² 2p¹)

 B) La configuration électronique du chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁵
- B) La configuration électronique du chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p³ (17 e- au total)

Question 5. Réponses

Configurations électroniques (e-). La cytochrome c oxydase, enzyme terminale de la chaîne respiratoire, contient en son cœur un atome de fer(II). La cobalamine (vitamine B_{12}) contient, quant à elle, un atome de cobalt(III).

Données : 56₂₆Fe, 59₂₇Co

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La configuration e- du $^{59}_{27}$ Co⁽⁰⁾ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
- B) La configuration e- du $^{59}_{27}$ Co³⁺ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷ (4s⁰)
- C) La configuration e- du $^{56}{}_{26}\text{Fe}^{(0)}$ est : 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 (4s^0)
- D) La configuration e- du ${}^{56}{}_{26}\text{Fe}^{2+}$ est : 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 (4s^0)
- E) Pour n = 3 (nombre quantique principal), la couche M peut comporter au maximum 16 électrons

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

- B) La configuration e- du cobalt $^{59}_{27}$ Co³⁺ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶
- C) La configuration e- du fer ${}^{56}_{26}$ Fe ${}^{(0)}$ est : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$
- E) Pour n = 3, la couche M peut comporter au maximum 18 électrons

Question 6. Réponses

Théorie VSEPR.

Données: ¹₁H, ¹⁰₅B, ¹²₆C, ¹⁴₇N, ¹⁶₈O, ³⁵₁₇Cl

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) CO₂ et HCN sont en AX₂E₀ (géométrie linéaire)
- B) CO₂ et H₂O sont en AX₂E₂ (géométrie tétraédrique)
- C) COCl₂ et NH₄⁺ sont en AX₄E₀ (géométrie tétraédrique)
- D) COCl₂ et BCl₃ sont en AX₃E₀ (géométrie triangulaire plane)
- E) NH₃ et H₃O⁺ sont en AX₃E₁ (géométrie tétraédrique)

Proposition	A)	B)	C)	D)	E)
Réponse					

- B) CO₂ est en AX₂E₀ (géométrie linéaire) et H₂O est en AX₂E₂ (géométrie tétraédrique)
- C) COCl₂ est en AX₃E₀ (triangulaire plan) et NH₄⁺ est en AX₄E₀ (géométrie tétraédrique)

Question 7. Réponses

Le métabolisme des protéines conduit à la formation de guanidine qui peut se retrouver dans les urines sous forme protonée (sous forme d'ion guanidinium). On s'intéresse à la représentation de Lewis de l'ion guanidinium (représentations 1 à 4 ci-dessous):

$$\begin{array}{ccc} & & & & & & \\ & \stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}} & & & & \\ & \stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}} & & & \\ & H_2 N & & & & \\ & & N H_2 & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

- A) La représentation 1 est exacte selon Lewis
- B) Les représentations 2 et 3 sont exactes selon Lewis
- C) La représentation 4 est exacte selon Lewis
- D) L'atome de carbone central de la guanidine est hybridé sp²
- E) La guanidine est une base de Lewis

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 8. Réponses

On s'intéresse à la représentation de Lewis de l'anion carbonate CO₃²⁻ (représentations 1 à 4 ci-dessous).

Représentation **1** Représentation **2** Représentation **3** Représentation **4** Données : ¹²₆C (Carbone), ¹⁶₈O (Oxygène)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Selon la théorie VSEPR, l'anion carbonate CO₃²⁻ est de géométrie triangulaire plan
- B) La représentation 1 de l'anion carbonate CO₃²⁻ est exacte selon Lewis
- C) Les représentations 2 et 3 de l'anion carbonate CO₃²⁻ sont exactes selon Lewis
- D) La représentation 4 de l'anion carbonate CO₃²- est fausse selon Lewis
- E) Dans CO₃²⁻, l'atome de carbone est hybridé sp

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 9. Réponses

L'ion hypobromite BrO est utilisé pour ses propriétés antiseptiques et parasiticides. On s'intéresse à la représentation de Lewis de l'anion BrO (représentations 1 à 3 ci-dessous) :

$$|\underline{\overline{Br}} - \underline{\overline{O}}|^{\Theta}$$
 $|\underline{\overline{Br}} = \underline{\overline{O}}|^{\Theta}$ $|\underline{\overline{Br}} - \underline{\overline{O}}|^{\Theta}$

Représentation 1 Représentation 2 Représentation 3

Données: 1680 (Oxygène), 7935Br (Brome)

- A) L'atome de Br est de valence 1
- B) La représentation 1 de l'anion BrO est exacte selon Lewis
- C) La représentation 2 de l'anion BrO est fausse selon Lewis
- D) La représentation 3 de l'anion BrO est exacte selon Lewis
- E) Le brome possède 7 e- sur sa couche externe

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 10. Réponses

On s'intéresse ci-après aux représentations de Lewis du protoxyde d'azote $(N_2O,$ un gaz utilisé en anesthésie) :

$$\oplus \overline{N} = \stackrel{\bigcirc}{N} = O$$

$$\underline{\underline{\mathsf{N}}} = \underline{\underline{\mathsf{N}}} - \underline{\underline{\mathsf{O}}}^{\scriptscriptstyle \square}$$

Représentation 1

Représentation 2

Représentation 3

Représentation 4

Données : 147N, 168O

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La représentation 1 est exacte selon Lewis
- B) La représentation 2 est exacte selon Lewis
- C) La représentation 3 est exacte selon Lewis
- D) La représentation 4 est exacte selon Lewis
- E) La représentation 4 respecte la règle de l'Octet

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 11. Réponses

L'halauxifen-méthyl est un herbicide avec des propriétés d'hormone de croissance. Le formotérol est utilisé en tant que bronchodilatateur. Leurs structures sont représentées ci-dessous :

- A) L'halauxifen-méthyl possède une fonction ester méthylique
- B) Le groupement -OCH₃ (étheroxyde) présente un effet mésomère électrodonneur (+M)
- C) Dans le formotérol représenté ci-dessus, tous les atomes de carbone asymétriques sont de configuration absolue *Rectus* (*R*)
- D) Le formotérol possède une fonction amide primaire qui présente un effet mésomère électroattracteur (-M)
- E) Dans l'halauxifen-méthyl, les atomes de fluor (-F) et de chlore (-Cl) présentent un effet mésomère électrodonneur (+M) faible

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 12. Réponses

Les structures de l'ibuprofène (un anti-inflammatoire non stéroïdien), du paracétamol (utilisé comme antalgique et antipyrétique) et de l'aspirine (un anti-inflammatoire non stéroïdien) sont représentées ci-dessous :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

A) L'ibuprofène représenté ci-dessus est de configuration absolue *Rectus* (*R*)

Aspirine

- B) Dans le paracétamol, le groupement hydroxyle et la fonction amide présentent tous deux un effet mésomère électroattracteur (-M)
- C) Le paracétamol possède une fonction amine secondaire
- D) Le groupement -COOH de l'aspirine présente un effet mésomère électroattracteur (-M)
- E) L'aspirine possède une fonction ester méthylique

Proposition	A)	B)	C)	D)	E)
Réponse					

- B) Dans le paracétamol, le groupement hydroxyle et la fonction amide présentent tous deux un effet mésomère électrodonneur (+M)
- C) Le paracétamol possède une fonction amide secondaire
- E) L'aspirine possède une fonction ester mais qui n'est pas méthylique

Question 13. Réponses

Les structures du flurbiprofène, un anti-inflammatoire non-stéroïdien, et du flutamide, utilisé dans le traitement du cancer de la prostate, sont représentées ci-dessous :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Le flurbiprofène représenté ci-dessus est de configuration absolue *Rectus* (*R*)
- B) Dans le flurbiprofène, l'atome de fluor présente un effet mésomère donneur (+M) faible et un effet inductif électroattracteur (-I) fort
- C) Le flutamide est achiral
- D) Dans le flutamide, le groupement -NO₂ présente un effet mésomère électroattracteur (-M) fort
- E) Le flutamide possède un radical iso-butyle

Proposition	A)	B)	C)	D)	E)
Réponse					

- A) Le flurbiprofène représenté ci-dessus est de configuration absolue Sinister (S)
- E) Le flutamide possède un radical isopropyle

Question 14. Réponses

On s'intéresse ci-dessous à la structure de la midodrine, une pro-drogue de la desglimidodrine :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La midodrine possède une fonction amide secondaire
- B) Les deux groupements méthoxy (-OCH₃) sont en position *méta* l'un par rapport à l'autre
- C) Le radical méthoxy (-OCH₃) exerce un effet mésomère électrodonneur (+M)
- D) La desglimidodrine représentée ci-dessus est de configuration absolue *Rectus* (*R*)
- E) La desglimidodrine possède une fonction amine primaire

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

B) Les deux groupements méthoxy (-OCH₃) sont en position para l'un par rapport à l'autre

Question 15. Réponses

Les structures de la benzbromarone (utilisée dans le traitement de l'hyperuricémie) et l'acide mycophénolique (un agent immunosuppresseur) sont représentées ci-dessous :

Acide mycophénolique

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

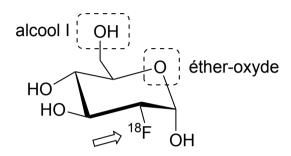
- A) Les deux atomes de brome de la benzbromarone sont en position *méta* l'un par rapport à l'autre
- B) Le groupement -OH de la benzbromarone est en position *ortho* des deux atomes de brome
- C) Les deux atomes de brome exercent un effet mésomère électrodonneur (+M) faible
- D) L'acide mycophénolique possède une double liaison C=C de configuration *Zusammen* (*Z*)
- E) L'acide mycophénolique possède une fonction lactone (ester cyclique)

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

D) L'acide mycophénolique possède une double liaison C=C de configuration Entgegen (E)

Question 16. Réponses


La disparition actuelle de nombreux essaims d'abeilles est potentiellement liée à une utilisation excessive d'insecticides. Les structures de l'acétamipride et du nitenpyrame, deux insecticides de la famille des néonicotinoïdes, sont représentées ci-dessous :

- A) L'acétamipride possède une fonction nitrile
- B) Les deux groupements -CH₃ de l'acétamipride exercent un effet inductif électrodonneur (+I)
- C) L'atome de chlore exerce un effet mésomère électrodonneur (+M) faible
- D) L'acétamipride et le nitenpyrame possèdent tous deux un cycle aromatique
- E) Le groupement -NO2 présente un effet mésomère électroattracteur (-M)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 17. Réponses

On s'intéresse ci-après à la structure chimique du fluorodésoxyglucose, un dérivé marqué au fluor 18 radioactif qui est utilisé en imagerie par Tomographie d'Emission de Positrons (imagerie TEP). Donnée: ¹⁹₉F (Fluor)

Fluorodésoxyglucose (18FDG)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Il manque 13 doublets non-liants pour représenter correctement, selon Lewis, la molécule de fluorodésoxyglucose (¹⁸FDG)
- B) Le fluorodésoxyglucose (18FDG) possède une fonction étheroxyde
- C) Le fluor ¹⁸₉F radioactif est un isotope du fluor ¹⁹₉F, élément naturel
- D) La configuration électronique du fluor ¹⁸₉F est 1s² 2s² 2p⁶
- E) L'atome de fluor est plus électronégatif que l'atome d'oxygène

Proposition	A)	B)	C)	D)	E)
Réponse					

A NOTER

D) La configuration électronique du fluor ¹⁸₉F est 1s² 2s² 2p⁵ identique à celle du fluor ¹⁹₉F

Questions

Isomérie / stéréochimie

Question 1. Enoncé

La dexaméthasone est habituellement prescrite pour traiter diverses maladies inflammatoires. Elle a récemment été testée dans la lutte contre la covid-19. Sa structure chimique est représentée ci-après :

Dexaméthasone

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Le carbone C_{11} de la dexaméthasone est de configuration absolue *Rectus* (R)
- B) La dexaméthasone possède une fonction cétone conjuguée
- C) Le carbone C_{16} de la dexaméthasone est de configuration absolue *Rectus* (*R*)
- D) La dexaméthasone possède une fonction acide carboxylique
- E) La dexaméthasone possède 8 atomes de carbone asymétrique

Proposition	A)	B)	C)	D)	E)
Réponse					

- F) Le carbone C₁₆ de la dexaméthasone est de configuration absolue Sinister (S)
- G) La dexaméthasone possède un plan de symétrie
- H) Le carbone C₁₁ de la dexaméthasone est de configuration absolue Sinister (S)
- I) La dexaméthasone possède deux fonctions cétone
- J) La dexaméthasone ne possède que 6 atomes de carbone asymétrique

Proposition	F)	G)	H)	I)	J)
Réponse					

Question 2. Enoncé

Les structures du kétoprofène (un anti-inflammatoire non stéroïdien), du tramadol (un antalgique) et de la nicotine (un alcaloïde) sont représentées ci-dessous :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Le kétoprofène est de configuration absolue *Rectus* (*R*)
- B) Le tramadol est de configurations absolues Rectus-Rectus (R,R)
- C) Le tramadol de configurations absolues *Sinister-Sinister* (S,S)
- D) La nicotine est de configuration absolue Sinister (S)
- E) Les atomes de carbone asymétriques des 3 composés ont tous la même configuration absolue

Proposition	Δ)	B)	(C)	D)	E)
Proposition	A_j	D)	C_j	D)	L)
Réponse					

- F) Le kétoprofène est achiral
- G) Le tramadol possède 2 atomes de carbone asymétriques de même configuration absolue
- H) Le tramadol est de configurations absolues Rectus-Sinister (R,S)
- I) La nicotine est de configuration absolue Rectus (R)
- J) Les atomes de carbone asymétriques du kétoprofène et de la nicotine ont la même configuration absolue

Proposition	F)	G)	H)	I)	J)
Réponse					

Question 3. Enoncé

Les structures de l'atorvastatine (un hypolipémiant), de la prilocaïne (un anesthésique local) et de la fluoxétine (un anti-dépresseur) sont représentées cidessous :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'atorvastatine est de configurations absolues Rectus-Rectus (R,R)
- B) L'atorvastatine possède un radical isopropyle
- C) La prilocaïne est de configuration absolue Sinister (S)
- D) La fluoxétine est de configuration absolue Sinister (S)
- E) La fluoxétine possède une fonction amine tertiaire

Proposition	A)	B)	C)	D)	E)
Réponse					

- F) L'atorvastatine possède deux atomes de carbone asymétriques de même configuration absolue
- G) L'atorvastatine possède un radical n-propyle
- H) La prilocaïne est de configuration absolue Rectus (R)
- I) La prilocaïne possède une fonction amide conjuguée
- J) La fluoxétine est de configuration absolue *Rectus* (*R*)

Proposition	F)	G)	H)	I)	J)
Réponse					

Question 4. Enoncé

Les structures de l'étidocaïne (un anesthésique local), du clobutinol (un antitussif désormais retiré du marché) et du ciprofibrate (un agent hypotriglycéridémiant), sont représentées ci-dessous :

CI
$$H_3C$$
 OH CH_3 H_3C H CH_3

Etidocaïne Clobutinol

CI H_3C CH $_3$ OH

CI H_3C CH $_3$ OH

Ciprofibrate

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'étidocaïne est de configuration absolue *Sinister* (*S*)
- B) Le clobutinol est de configurations absolues Rectus-Rectus (R,R)
- C) Tous les atomes de carbone asymétriques de l'étidocaïne, du clobutinol et du ciprofibrate sont de configuration absolue *Sinister* (*S*)
- D) Le ciprofibrate est de configuration absolue *Rectus* (*R*)
- E) Le ciprofibrate possède une fonction étheroxyde conjuguée

Proposition	A)	B)	C)	D)	E)
Réponse					

- F) L'étidocaïne est de configuration absolue *Rectus* (*R*)
- G) Le clobutinol est de configurations absolues Sinister-Sinister (S,S)
- H) Tous les atomes de carbone asymétriques de l'étidocaïne, du clobutinol et du ciprofibrate sont de même configuration absolue
- I) Le ciprofibrate est de configuration absolue Sinister (S)
- J) Le ciprofibrate possède un cyclopropyle

Proposition	F)	G)	H)	I)	J)
Réponse					

Question 5. Enoncé

Les structures de la vitamine **B2** et de la vitamine **B8** sont représentées ci-dessous :

Vitamine B2 : riboflavine

$$C_2^*$$
 C_2^*
 C_2^*

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

HN

- A) La vitamine **B2** est de configurations absolues (2S, 3S, 4R)
- B) Il manque 16 doublets électroniques pour représenter correctement, selon Lewis, la structure de la vitamine **B2**

Vitamine B8: biotine

- C) La vitamine **B2** possède deux groupements méthyles qui sont, sur le cycle aromatique, en position *ortho* l'un par rapport à l'autre
- D) La vitamine **B8** possède deux atomes de carbone asymétriques de configuration absolue *Sinister* (*S*)
- E) Tous les atomes de carbone asymétriques de la vitamine **B8** sont de configuration absolue *Rectus* (*R*)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 6. Enoncé

Des stéréoisomères de l'asparagine (un acide α -aminé) et de l'acide tartrique (un acide α -hydroxylé) sont représentés ci-dessous :

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'asparagine lévogyre est de configuration absolue Sinister (S)
- B) L'asparagine *Rectus (R)* est dextrogyre
- C) L'asparagine possède une fonction amide primaire
- D) L'acide (+)-tartrique et l'acide (-)-tartrique sont énantiomères
- E) L'acide tartrique est l'acide 2,3-dihydroxybutanedioïque

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 7. Enoncé

La structure de l'amorolfine (un antifongique) est représentée ci-dessous :

- A) L'amorolfine possède un radical sec-butyle
- B) L'amorolfine est achirale
- C) Le cycle aromatique est disubstitué en para
- D) Dans la représentation 1, tous les atomes de carbone asymétriques sont de configuration absolue *Rectus* (*R*)
- E) L'amorolfine possède 3 atomes de carbone asymétriques

Proposition	A)	B)	C)	D)	E)
Réponse					